
Minimum interface required to run programs on a

machine.

Key Ideas:

Abstraction: What is the desired illusion-

Mechanism: How to create the illusion, fixed method-

Policy: Which way to use mechanism to meet a goal-

Kernel
Wednesday, January 11, 2023 5:17 PM

 CSE 120 Page 1

Def: Abstraction of a running program. Is dynamic and has state which changes.

Resources of a process:

CPU: Executes instructions-

Memory: Stores state-

Context of a process:

CPU context: values of registers (PC, SP, FP, GP)-

Memory context: pointers to memory areas (Text, Data, Heap, Stack)-

Kernel State-

Goal: Support multiple processes simultaneously

Process
Monday, January 9, 2023 2:03 PM

 CSE 120 Page 2

Multiprogramming:

Context Switching:

Simple context switching example:

Multiprogramming, Context Switching
Wednesday, January 11, 2023 5:19 PM

 CSE 120 Page 3

Simple context switching example:

Notes:

User context switch: syscall -> Yield() -> TRAP instruction

Trap instruction: indicates to CPU that it will suddenly switch to kernel space○

-

Kernel context switch: clock interrupt -> preemptive scheduling-

 CSE 120 Page 4

Saving process A to Kernel Space

Restoring process B from Kernel Space

Yielding via Kernel
Wednesday, January 11, 2023 6:11 PM

 CSE 120 Page 5

 CSE 120 Page 6

Def: Divide CPU time into parts and allocating to processes

Idea: Create the illusion of parallel progress by rapidly switching CPU

Note: Kernel must keep track of each process' progress

Running: making progress, using CPU-

Ready: able to make process, not using CPU-

Blocked: not able to make progress, can't use CPU - blocked by some resource (ie. IO)-

Kernel selects a ready process and lets it run

Eventually the kernel regains control, and then selects a new process

Timesharing, Process State Diagram
Wednesday, January 18, 2023 5:05 PM

 CSE 120 Page 7

Def: Single sequential path of execution, independent of memory

Threads are part of a process

Lives in the memory of a process○

Allows multiple threads per process○

Threads share text and heap, but have their own stack○

-

Advantage to Users: unit of parallelism-

Advantage to Kernel: unit of schedulable execution-

Implementation: Call ForkThread()

Management:

Thread context switching○

Thread scheduling○

-

Idea: we can allow users to manage threads, include a thread library

Thread calls at the user level: ForkThread(), YieldThread() …-

Supports threads on any platform, but no true parallelism-

Threads
Wednesday, January 18, 2023 5:59 PM

 CSE 120 Page 8

Hardware-level Thread

Actual hardware support○

Logical CPU○

-

 CSE 120 Page 9

Problem: Which processes get CPU and when

Def:

Arrival time: time that process is created-

Service time: CPU time needed to complete-

Turnaround time: difference from arrival to departure-

Preemptive: kernel takes away CPU from a process through interrupts-

Starvation: process may never get CPU-

Longest First: select process with the longest service time

Shortest First: select process with the shortest service time

Provably optimal-

Note: Longest/Shortest first MUST know the service time of the processes, which is not easily doable

FIFO / First Come First Serve: select processes in order of arrival

Non-preemptive, simple, no starvation -

Round Robin: Each process gets CPU in turn

Preemptive, simple, no starvation-

Shortest Process Next: select process with shortest service time

Non-preemptive, assumes known service time, allows starvation-

Multi-Level Feedback Queues:

Priority queues: 0 (high), …, N (low) -

New processes enter queue 0 -

Select from highest priority queue -

Run for T = 2^k quantums

Used T: move to next lower queue, FIFO –○

Used < T: back to same queue, RR

Due to yield or higher priority arrival▪

○

-

Periodically boost (e.g., all to highest queue)-

Preemptive, complex, possible starvation-

Priority: Pick the process with highest priority

Allows scheduling based on external criteria-

Might have starvation-

Fair Share: Give CPU utilization equal to requested amount over the long run

Each process requests some percentage CPU utilization-

Select process with least action/requested ratio-

Too much overhead, requires a division for each process-

Stride Scheduling:

Scheduling Policies
Monday, January 23, 2023 6:44 PM

 CSE 120 Page 10

 CSE 120 Page 11

Problem: correctness of real time systems depend on correctness of computation and timing of results

If a result is delivered after a deadline, it is considered incorrect-

Hard: Every deadline must be met otherwise something catastrophic happens, ex: nuclear power plant

Every deadline MUST be met-
Soft: Missed deadlines are ok, ex: video delivery

Periodic: Does something, then waits for the next period of time

Period (T): each periodic cycle, each process must complete before this period

CPU burst (C): every period, each process must get some amount of CPU time

Utilization = C/T

Earliest Deadline First: Schedule the process with the earliest deadline

If earlier deadline occurs, preempt-

Works for periodic and aperiodic processes-

Achieves 100% utilization-

MUST SORT DEADLINES, can be slow-

If sum of utilization <= 100%, will meet all deadlines-

Rate Monotonic Scheduling: Only for periodic processes, prioritize based on rates

At start of period, select highest priority-

Preempt is necessary-

If all processes are finished, wait until the next deadline-

If sum(utilization) <= n*(2^(1/n) - 1) where n is the number of processes then it will pass

Not necessarily fail if this does not hold○

-

Real Time Scheduling
Monday, January 30, 2023 6:28 PM

 CSE 120 Page 12

Avoid race conditions, where processes will modify the same resource at the same time

Ex: two processes modify variable money

P1: money += 100

P2: money -= 100

If both processes make a copy of money at the same time, then when they try to return, there will be ambiguity

Identify critical sections of code-

Enforce mutual exclusion, only one process active in a critical section

Can achieve mutual exclusion by restricting only one process to be in its critical section at any time○

-

Solution Requirements:

At most one critical section at a time1.

Can't prevent entry if no others are in theirs2.

Should eventually be able to enter3.

No assumptions about CPU speed or number4.

Software Lock:

Use a "shared variable" (between processes) -

If an interrupt happens just after P1 enters the while loop, then it can enter the critical section upon resume

which breaks #1, since both P1 and P0 are now in the critical section

-

Taking Turns:

If turn = 0, but P1 is running (ie context switch occurred), then P1 is prevented entry and may never enter

which breaks #2 #3

-

State Intention

If P0 sets intent[0], then context switch to P1 and sets intent[1], then neither process can escape the while

loop

-

Peterson's Solution

Synchronization
Monday, January 30, 2023 7:33 PM

 CSE 120 Page 13

Use both intention and turn variables-

Disabling Interrupts

Need to disable interrupts for each CPU individually, might have an interrupt in the middle-

 CSE 120 Page 14

Solution: avoid interrupt issues using the TSL

instruction

TSL Instruction
Wednesday, February 1, 2023 7:11 PM

 CSE 120 Page 15

Def: Synchronization variable

Integer values-

Can cause process to block/unblock when modifying-

Cannot test the value of semaphore-

Operations:

wait(s) - decrement; block if s < 0-

signal(s) - increment; if any blocked, unblock one-

Notes:

Only for synchronization use, cannot learn anything about another process because no information is transferred-

Still has some busy waiting within the semaphore implementation, but is relatively smaller than other solutions-

Solution:

Implementation:

wait and signal MUST BE ATOMIC!!! Use a lower level mechanism to implement wait and signal.

Semaphores
Wednesday, February 1, 2023 7:20 PM

 CSE 120 Page 16

Another use for semaphores:

Process Ordering
Wednesday, February 1, 2023 7:32 PM

 CSE 120 Page 17

IPC requires mechanisms for:

Data transfer-

Synchronization-

Shared memory + semaphores

Monitors:

Programming language construct for IPC

Variables (shared) requiring controlled access ○

Accessed via procedures (mutual exclusion) ○

Condition variables (general synchroniza6on)

wait (cond): block until another process signals cond ▪

signal (cond): unblock a process waiting on cond ▪

○

-

Only one process can be active inside monitor

Active = running or able to run; others must wait ○

-

Message passing

Inter-Process Communication
Wednesday, February 8, 2023 6:45 PM

 CSE 120 Page 18

Def: Deadlock

Four conditions for deadlock:

Mutual exclusion: only one process can use a resource at a time1)

Hold and wait: process holds resource while waiting for another (ie hold memory and request more memory)2)

No preemption: can't take resource away from a process3)

Circular wait: the waiting processes form a cycle4)

Solutions:

Prevention: make deadlock impossible by removing condition

Mutual exclusion: Some resources may not be easily shared1)

Hold and wait: Not all processes know the amount of resources beforehand2)

No preemption: processes may be in the middle of using resources3)

Circular wait: 4)

-

Avoidance: Avoid situations that lead to deadlock

Bankers Algorithm

Process claim matrix: how much of each resource a process will use at most▪

Process allocation matrix: how much of each resource a process is currently using▪

Resource availability vector: which resources are available▪

Keep system in a safe state, where there is an order of execution to escape any deadlock▪

○

-

Detection and Recovery

Do nothing to prevent/avoid deadlocks

So something if/when they happen▪

○

Justification:

Deadlocks rarely happen▪

Cost of prevention or avoidance not worth it▪

○

Most popular approach○

Detecting deadlocks:

Detect a cycle in resource requirements▪

○

Recovery:

Break the cycle

Terminate all deadlocked processes□

Terminate processes one at a time□

▪

Potentially causes issues with resources in intermediate state (files half written)▪

○

-

Deadlock
Monday, February 13, 2023 7:25 PM

 CSE 120 Page 19

Where should process memories be placed?

- Memory management

How does the compiler model memory?

Logical memory-

Segmentation-

How to deal with limited physical memory?

Virtual memory-

Paging-

Memory
Wednesday, February 22, 2023 7:05 PM

 CSE 120 Page 20

Process Memory:

Text: code of program-

Data: static variables, heap-

Stack: Automatic variables, activation records-

Shared memory regoins-

Characteristics: size (fixed or variable), Permissions (r,w,x)

Address space:

Process Memory
Wednesday, February 22, 2023 6:24 PM

 CSE 120 Page 21

Problem: how to allocate and free portions of memory

Allocation occurs when: processes created or request more memory-

Free occurs when: process exits, process no longer requires memory requested-

Solution:

Physical memory starts as one empty “hole”-

Over time, areas get allocated: “blocks” -

To allocate memory – Find large enough hole

Allocate block within hole ○

Typically, leaves (smaller) hole○

-

When no longer needed, release

Creates a hole, coalesce with adjacent○

-

Problem: How to select the best hole?

First fit: select the first hole that fits the block

Simple and fast-

Next fit: select the next available hole that fits the block

Simpler and faster-

Best fit: selects the smallest hole that fits the block

Must check every hole (slow)-

Leaves very small fragments-

Worst fit: selects the largest hole

Must check every hole (slow)-

Leaves very large fragments-

Problem: fragmentation, where lots of small holes are scattered everywhere

Internal fragmentation: unused space within allocated block, cannot be allocated to others-

External fragmentation: unused space outside any blocks, can be allocated-

Compaction: Reallocate processes so that a larger holes can be created

Simple but very time consuming-

Subblock: Break block into smaller sub blocks and fit into smaller holes, filling fragments

Easier to fit and faster but complex-

Memory Management, Fragmentation
Wednesday, February 22, 2023 6:45 PM

 CSE 120 Page 22

Def: 50% rule

Holes = 1/2 * Blocks-

Note holes are always external fragmentation

Def: Unused Memory Rule:

f = k / (k+2)-

k = h/b - average hole to block size-

As k -> infinity, then f -> 1-

As k -> 0, then f -> 0-

50% Rule, Unused Memory Rule
Monday, February 27, 2023 6:39 PM

 CSE 120 Page 23

Problem: variable size allocations cause external fragmentation

Idea: have a few preselected sizes

One size: inflexible, may be too small or large-

A good variety of sizes: flexible but more complex-

Solution: Buddy system

Ex:

Buddy System
Monday, February 27, 2023 6:56 PM

 CSE 120 Page 24

Note: use a binary tree to store the allocations

 CSE 120 Page 25

Logical memory: a process' memory as referenced by a process

Allocated without regard to physical memory-

Problems with sharing memory:

Addressing: unknown where process will be allocated-

Protection: prevent process from modifying another-

Space: how to distribute finite memory to many processes-

Address Space: Set of addresses for memory, usually linear

Typically kernel occupies the lowest address-

Local addresses: assumes separate memory starting at 0

Compiler generated-

Independent of location in physical memory-
Converting logical to physical addresses:

Software: Compiler sets the offset at compile time

Hardware:

Addressing: Base register filled with start address, added to logical address on access○

Protection: use a bound register to ensure process does not go out of bounds○

Organizing Physical Address Space:

Segmented: divide into segments of different sizes

Segment translate table: remembers the starting address of each segment

V: valid bit ▪

Base: segment location ▪

Bound: segment size ▪

Perm: permissions ▪

○

Add offset + base to find the physical address○

Also hold entries for bounds and permission○

One segment table per process stored in kernel○

-

Paged: Partition into pages of fixed size

Keep table mapping pages in logical to pages in physical, one per process

V: valid bit ▪

Demand paging bits ▪

Frame: page location▪

○

Convert top n bits of logical to top n bits of physical and keep the offset○

-

Logical Memory
Wednesday, March 1, 2023 6:31 PM

 CSE 120 Page 26

Combining Segmentation and Paging:

Address translation:

Logical address: [segment s, page p, offset i]-

Do various checks: s < STSR, valid == 1, p < bound, permissions-

Use s to index segment table to get page table-

Use p to index page table to get frame f-

Physical address = concatenate (f, i)-

Monday, March 6, 2023 6:39 PM

 CSE 120 Page 27

Cost: Each lookup is a memory access

Keep commonly accessed pages in fast memory-

Leverage space locality-

 CSE 120 Page 28

Def: Virtual memory is a logical memory except not all memory may be store in physical memory

Keep most of process memory is kept in disk, which is larger and cheaper-

Unit of memory is segment or page-

Idea: Treat physical memory as a cache of commonly used segments or pages

If a page access is not in memory, throw a page fault-

Page fault handling: TRAP into kernel

Find page on disk (kept in kernel data structure)-

Read page into free frame (may need to replace)-

Record frame number into page entry table-

Set valid bit and other fields-

Retry instruction-

Problem: Disk is slow, 5 - 6 orders of magnitude slower

Ensure page faults are rare -

Page Replacement: What page to replace with a new page?

FIFO: replace the page that is the oldest

Simple: use frame ordering○

Does not perform well, oldest page may be the most popular○

-

OPT: select page to be used furthest in the future

Optimal but requires future knowledge○

Establishes best case○

-

LRU: select page that was least recently used

Predict future based on past○

Costly, need to time stamp each page access, find least○

-

Clock algorithm:

add reference bit associated with each frame○

when frame is filled set bit to 0 by OS○

if frame is accessed set bit to 1 by hardware○

Arrange all frames in a circle○

Pointer to next frame to consider replacing

If ref = 0, replace this frame▪

Else set bit to 0▪

Advance clock hand and repeat until a frame is found▪

○

-

Which is better?:

Resident Set: process' pages in memory

Local: limit frame selection to requesting process-

Global: select and frame from any process-

Working Set: what are the most important pages

Virtual Memory
Monday, March 6, 2023 7:14 PM

 CSE 120 Page 29

File: logical unit of storage, container of data

Accessed by <name, region within file>-

Goals:

Archival storage: keep forever including previous versions-

Support various storage technologies-

Best achieve / balance: performance, reliability, security-

File System: a structured collection of files

Access control - who is allowed access?-

Name Space - how is the name of the file structured (path)-

Persistent storage - how is the data physically stored-

Abstraction:

Objects are data, programs, for system or users○

Objects referenced by name, to be read/written○

Persistent - remains "forever"○

Large - "unlimited" size○

Sharing and control access○

Security: protecting information○

Objects:

Anything that can be accessed by name○

Can be read or written○

Can be protected○

Can be shared○

Can be locked○

IE: IO devices (disk, keyboard, display), Process memory○

Files and File System
Monday, March 13, 2023 6:32 PM

 CSE 120 Page 30

Name space organized as a tree

Name has components, branches start from root-

No size restrictions-

Intuitive for users-

IE: UNIX "path names"

Absolute: /a/b/c-

Relative b/c relative to /a-

Not strictly a tree: links-

File attributes:

Type (user or system)-

Times: creation, accessed, modified-

Sizes: current size, maximum size-

Permissions-

File Operations:

Create, delete-

Prepare for access: open, close, mmap-

Access: read, write-

Search: move to location-

Attributes: get, set (permissions)-

Mutual exclusion: lock, unlock-

Name management: rename-

Hierarchical Namespace, File Model
Monday, March 13, 2023 6:44 PM

 CSE 120 Page 31

Read/Write Model: read/write COPY of file in memory

fd= open(filename, mode) : opens the file, returns the file descriptor

nr = read(fd, data_buffer, data_size) : read from the file and store to the buffer, returns the actual amount read

nw = write(fd, buf, size) : write to the file from the buffer, returns the

close(fd) : close the file

Memory Mapped Model:

addr = mmap(fd, NULL, n) : loads the fd into array

addr[index] …

Problem: how is the file actually updated?

Access Model: How are files shared to varying degrees

Who can access control?-

What operations are allowed-

UNIX: r/w/x permissions for owner, group and everyone

Read/Write Model, Memory Mapped Model, Access

Model
Monday, March 13, 2023 7:03 PM

 CSE 120 Page 32

Idea: Use blocks to hide complexity of device

Model storage as array of blocks of data-

Randomly addressable by block number-

Typical block size: 1kB, 4kB - 64kB-

Simple interface:

read(block_num, mem_addr)-

write(block_num, mem_addr)-

Disk regions:

File System Metadata -

Information about the file system○

Files metadata in use, free entries○

Data blocks in use, free entries○

-

File Metadata: file control blocks

Information about a file

Attributes: type of file, size, permissions▪

○

References to data blocks

Contiguous blocks: pointer to the first block and size of sequence▪

Groups of contiguous blocks: store multiple sequences of contiguous blocks▪

Non-contiguous blocks: each block individually named▪

○

Unix:○

-

Keeping track of free blocks:

Free block map: pointer to free block and size of free span○

Doubly linked list○

Bit map: set bit to 1 if block is occupied○

-

Data Blocks - file contents-

Storage Abstraction
Monday, March 13, 2023 7:30 PM

 CSE 120 Page 33

